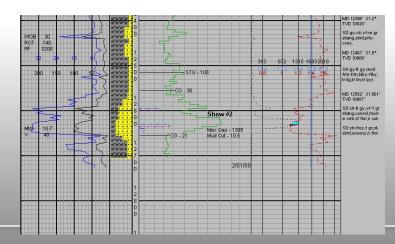


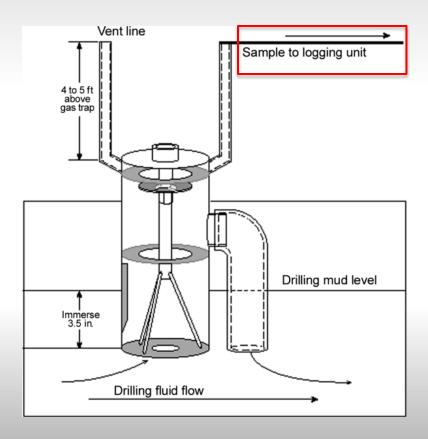
Fast Analysis of C1 to C8 hydrocarbons for mud logging applications within 2 minutes using a temperature programmable Micro GC Fusion®


Debbie Alcorn 03/12/15 – 11:05 a.m. PITTCON 2015

### Introduction

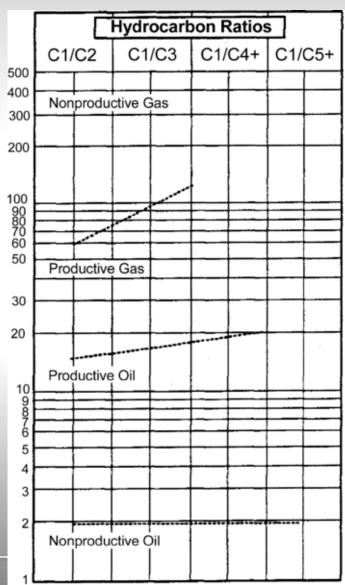
- Mud Logging Introduction
- Gas Sampling at the Well Site
- Gas Chromatography (GC) for Hydrocarbon Analysis
- Instrumentation
- Instrument Features
- Methods and Data
  - C1-C5 in 34 seconds
  - C1-C8 in 2 minutes
- On-Site Tips for Successful Analysis
- Future Development

# Mud Logging Introduction


- Mud logging is the creation of detailed reports of a borehole on a well site during active drilling
- Liquid, or "mud", is used as the drilling fluid to bring gas, formation fluids, and rock cuttings to the surface for analysis
- A mud log provides key geographical information, including lithology, rate of penetration, and hydrocarbon content
- The concentration of C1-C8 compounds is critical and must be performed on a continuous, 24-7 basis






# Gas Sampling at the Well Site

- A gas trap allows the mud to separate between the gas and liquid components
- The head space gas then goes to the gas analyzer
- Gas chromatography (GC) is often used to analyze the gas sample



### Gas Chromatography for Hydrocarbon Analysis

- GC has been used for mud logging for decades to characterize reservoir fluid composition
- Each reservoir is composed of different amounts of hydrocarbon species
- The amount and ratios of compounds help identify zones of producible oil or gas
- Other calculations are used for wetness (W<sub>h</sub>), balance (B<sub>h</sub>), and character (C<sub>h</sub>)



### Gas Chromatography for Hydrocarbon Analysis

- C1-C5 compounds are of main importance; however, analysis of heavier hydrocarbons is often desired
- Heavier hydrocarbons, such as methylcyclohexane and C7 help indicate the presence of liquid phases

#### Instrumentation

- Small, transportable GC with <u>micro</u>electromechanical systems (MEMS) technology
- Successor to the 3000 Micro GC
- Gas only analysis
- Thermal conductivity detector (TCD)



Micro GC Fusion

## Instrument Features

#### Temperature programmable columns

- Minimizes carryover
- Allows for more components to elute on a single column
- Increases sample throughput

#### Modular configuration

- Each module contains an injector, column, and TCD
- Easy module exchange in the field

#### Web-based user interface

- Can run on any operating system/platform
- Can be operated from the front panel display

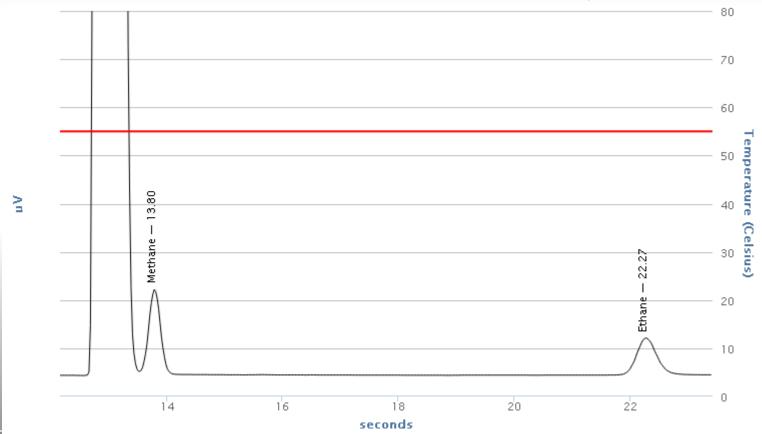
#### Integrated sample conditioner (optional)

- Reduces of sample pressures from up to 1000 psi down to approximately 5 psi
- Filters out particulates
- Heats the sample to 100 °C



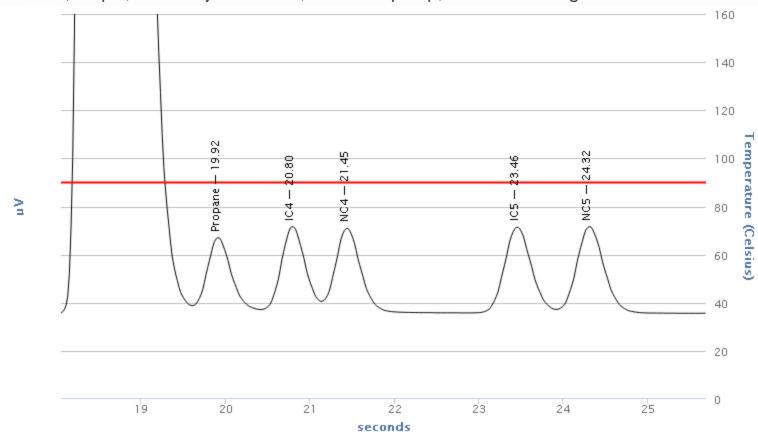


## Isothermal Method – C1-C5


- 2 module system
  - Module A 8m RT-Q-Bond, variable volume injector
  - Module B 10m Rxi-1ms, variable volume injector
- A method was designed to run continuously, using isothermal operation
- Total cycle time was 34 seconds

# Calibration Standard

| Component | Amount (%) |
|-----------|------------|
| Nitrogen  | 99.191     |
| Methane   | 0.200      |
| Ethane    | 0.101      |
| Propane   | 0.100      |
| iC4       | 0.102      |
| nC4       | 0.103      |
| iC5       | 0.102      |
| nC5       | 0.101      |

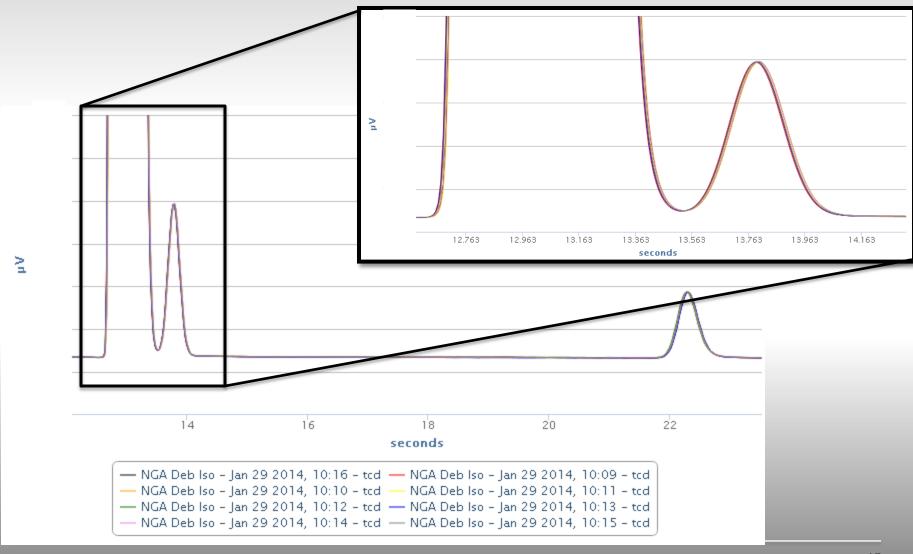

# Chromatograms

- Module A: RT-Q-Bond
- Initial parameters used:
  - 55°C, 37 psi, 15 ms injection time, 5 second pump, Helium carrier gas



# Chromatograms

- Module B: Rxi-1ms
- Initial parameters used:
  - 90°C, 33 psi, 15 ms injection time, 5 second pump, Helium carrier gas

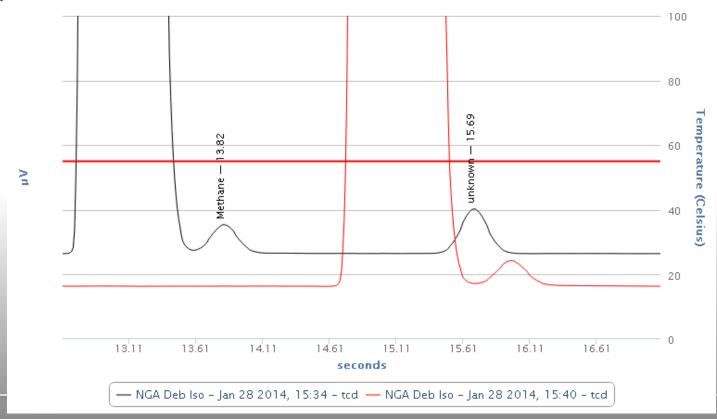



# Repeatability

- Exceptional repeatability
  - Less than 0.1 %RSD for retention time
  - Less than 0.6 %RSD for area

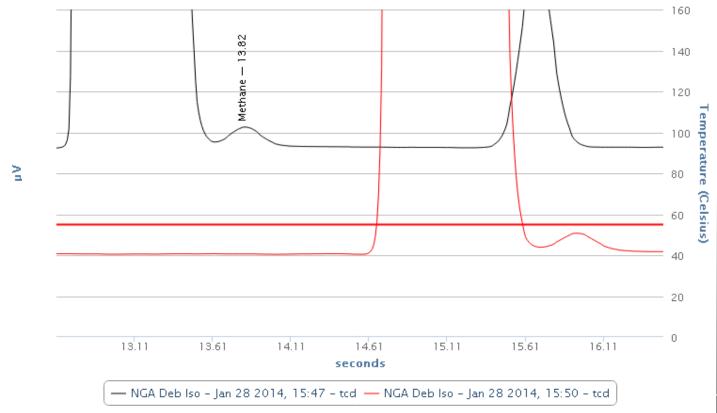
| 1/29/2014 | Last 10 runs (10:09 | a.m. to 10:16 a.m.) |
|-----------|---------------------|---------------------|
|           | Area %RSD           | RT %RSD             |
| Nitrogen  | 0.09                | 0.037               |
| Methane   | 0.57                | 0.041               |
| Ethane    | 0.51                | 0.049               |
| Propane   | 0.05                | 0.000               |
| iC4       | 0.33                | 0.025               |
| nC4       | 0.46                | 0.024               |
| iC5       | 0.39                | 0.000               |
| nC5       | 0.33                | 0.021               |

# 10 Runs Overlaid - RT-Q-Bond




## 10 Runs Overlaid – Rxi-1ms




# 500 ppm Methane

- Module A: RT-Q-Bond 37 psi and 32 psi
- Syringe dilution
- Reported concentration 0.051%



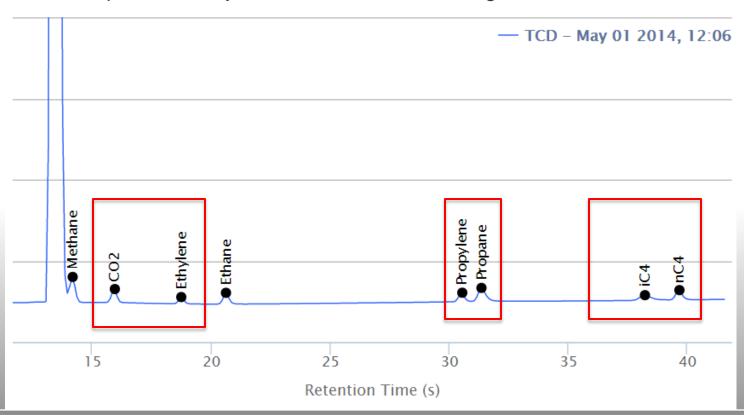
# 100 ppm Methane

- Module A: RT-Q-Bond 37 psi and 32 psi
- Syringe dilution
- Reported concentration 0.014%



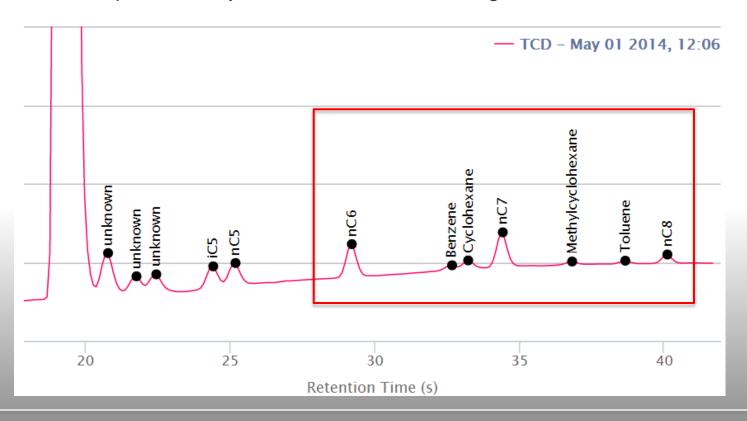
# Temperature Ramped Method – C1-C8

- 2 module system
  - Module A 8m RT-Q-Bond, variable volume injector
  - Module B 10m Rxi-1ms, variable volume injector
- A method was designed to run continuously, using temperature programming
- Total cycle time was approximately 2 minutes


## **Extended Calibration Standard**

| Component | Amount (%) |
|-----------|------------|
| Nitrogen  | 98.054     |
| Methane   | 0.5        |
| CO2       | 0.197      |
| Ethylene  | 0.095      |
| Ethane    | 0.2        |
| Propylene | 0.103      |
| Propane   | 0.197      |
| iC4       | 0.098      |
| nC4       | 0.098      |
| iC5       | 0.102      |
| nC5       | 0.102      |

| Component         | Amount (%) |
|-------------------|------------|
| nC6               | 0.12       |
| Benzene           | 0.021      |
| Cyclohexane       | 0.032      |
| nC7               | 0.01       |
| Methylcyclohexane | 0.01       |
| Toluene           | 0.011      |
| nC8               | 0.02       |


# Chromatograms

- Module A: RT-Q-Bond
  - 55°C(15s hold)→220°C(10s hold)
  - 7°C/s, 35 psi, 30 ms injection time, Helium carrier gas



# Chromatograms

- Module B: Rxi-1ms
  - $75^{\circ}$ C(9s hold)  $\rightarrow$  220°C(12s hold)
  - 7°C/s, 33 psi, 80ms injection time, Helium carrier gas

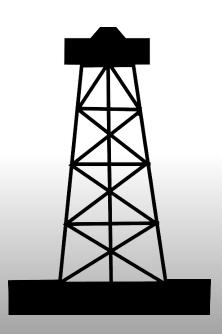


# On-Site Tips for Successful Analysis

- Power
  - Access to stable power
  - Surge protector, UPS
- Heated transfer lines
  - To keep heavier hydrocarbons from condensing
- Gas trap stability
- Water traps, filters

# **Future Developments**

- Method was optimized for speed
  - Aggressive nature of the ramp may not be optimized for instrument stability
- Future developments will include:
  - Backflush injectors to prevent carryover
  - Different combination of columns types/lengths
  - Analysis of ethylbenzene, nC9 with the same cycle time



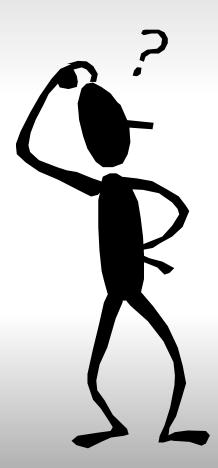

## Conclusion

- Using isothermal operation, C1-C5 compounds can be analyzed within 34 seconds using Micro GC Fusion with excellent repeatability
- Using new rapid temperature ramping, C1-C8 compounds can be analyzed within 2 minute cycle time
  - Additional compounds, such as CO2, ethylene, and propylene were also analyzed
- Future developments will focus on optimizing the configuration of Micro GC Fusion and the corresponding methods for the mud logging industry

#### References

- http://petrowiki.org/Formation\_evaluation\_during\_mud\_logging
- http://petrowiki.org/Mud\_logging
- http://www.ppdm.org/wiki/index.php/Well\_Operations\_Reference\_guide




For more information, visit:

www.INFICON.com

Or

Booth 837

# Questions?

